Problem 1.43

(a) Prove that the unit vector $\hat{\mathbf{r}}$ of two-dimensional polar coordinates is equal to

$$
\begin{equation*}
\hat{\mathbf{r}}=\hat{\mathbf{x}} \cos \phi+\hat{\mathbf{y}} \sin \phi \tag{1.59}
\end{equation*}
$$

and find a corresponding expression for $\hat{\phi}$. (b) Assuming that ϕ depends on the time t, differentiate your answers in part (a) to give an alternative proof of the results (1.42) and (1.46) for the time derivatives $\hat{\mathbf{r}}$ and $\hat{\boldsymbol{\phi}}$.

Solution

Part (a)
The rectangular (Cartesian) and cylindrical unit vectors in two dimensions are illustrated below.

$\hat{\mathbf{r}}$ is the unit vector of \mathbf{r}, the radial position vector. (Note that in spherical coordinates
$\mathbf{r}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}$ because the vector starts from the origin, whereas in cylindrical coordinates \mathbf{r} starts from the z-axis.)

$$
\begin{aligned}
\hat{\mathbf{r}} & =\frac{\mathbf{r}}{|\mathbf{r}|} \\
& =\frac{x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+0 \hat{\mathbf{z}}}{\sqrt{x^{2}+y^{2}+0^{2}}} \\
& =\frac{x}{\sqrt{x^{2}+y^{2}}} \hat{\mathbf{x}}+\frac{y}{\sqrt{x^{2}+y^{2}}} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
\end{aligned}
$$

From the Pythagorean theorem, $r=\sqrt{x^{2}+y^{2}}$.

$$
\hat{\mathbf{r}}=\frac{x}{r} \hat{\mathbf{x}}+\frac{y}{r} \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
$$

Therefore, using the definitions of sine and cosine,

$$
\hat{\mathbf{r}}=\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
$$

$\hat{\phi}$ is perpendicular to both $\hat{\mathbf{z}}$ and $\hat{\mathbf{r}}$. Curling the fingers of the right hand from $\hat{\mathbf{z}}$ to $\hat{\mathbf{r}}$ makes it so the thumb points in the direction of $\hat{\phi}$. By the right-hand corkscrew rule, then,

$$
\begin{aligned}
\hat{\phi} & =\hat{\mathbf{z}} \times \hat{\mathbf{r}} \\
& =\hat{\mathbf{z}} \times(\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}}) \\
& =\cos \phi(\hat{\mathbf{z}} \times \hat{\mathbf{x}})+\sin \phi(\hat{\mathbf{z}} \times \hat{\mathbf{y}})+0(\hat{\mathbf{z}} \times \hat{\mathbf{z}}) \\
& =\cos \phi(\hat{\mathbf{y}})+\sin \phi(-\hat{\mathbf{x}})+0(\mathbf{0}) .
\end{aligned}
$$

Therefore,

$$
\hat{\phi}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}}
$$

Part (b)

Differentiate $\hat{\mathbf{r}}$ by using the product rule and the chain rule and noting that the Cartesian unit vectors are independent of time.

$$
\begin{aligned}
\frac{d \hat{\mathbf{r}}}{d t} & =\frac{d}{d t}(\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}}) \\
& =\frac{d}{d t}(\cos \phi \hat{\mathbf{x}})+\frac{d}{d t}(\sin \phi \hat{\mathbf{y}})+\frac{d}{d t}(0 \hat{\mathbf{z}}) \\
& =\frac{d}{d t}(\cos \phi) \hat{\mathbf{x}}+\cos \phi \frac{d \hat{\mathbf{x}}}{d t}+\frac{d}{d t}(\sin \phi) \hat{\mathbf{y}}+\sin \phi \frac{d \hat{\mathbf{y}}}{d t}+0 \frac{d \hat{\mathbf{z}}}{d t} \\
& =\frac{d}{d t}(\cos \phi) \hat{\mathbf{x}}+\cos \phi(\mathbf{0})+\frac{d}{d t}(\sin \phi) \hat{\mathbf{y}}+\sin \phi(\mathbf{0})+0(\mathbf{0}) \\
& =\left[(-\sin \phi) \cdot \frac{d \phi}{d t}\right] \hat{\mathbf{x}}+\left[(\cos \phi) \cdot \frac{d \phi}{d t}\right] \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =\frac{d \phi}{d t}(-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}}) \\
& =\frac{d \phi}{d t} \hat{\boldsymbol{\phi}}
\end{aligned}
$$

This is equation (1.42) on page 27.

Differentiate $\hat{\phi}$ by using the product rule and the chain rule and noting that the Cartesian unit vectors are independent of time.

$$
\begin{aligned}
\frac{d \hat{\boldsymbol{\phi}}}{d t} & =\frac{d}{d t}(-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}}) \\
& =\frac{d}{d t}(-\sin \phi \hat{\mathbf{x}})+\frac{d}{d t}(\cos \phi \hat{\mathbf{y}})+\frac{d}{d t}(0 \hat{\mathbf{z}}) \\
& =\frac{d}{d t}(-\sin \phi) \hat{\mathbf{x}}-\sin \phi \frac{d \hat{\mathbf{x}}}{d t}+\frac{d}{d t}(\cos \phi) \hat{\mathbf{y}}+\cos \phi \frac{d \hat{\mathbf{y}}}{d t}+0 \frac{d \hat{\mathbf{z}}}{d t} \\
& =\frac{d}{d t}(-\sin \phi) \hat{\mathbf{x}}-\sin \phi(\mathbf{0})+\frac{d}{d t}(\cos \phi) \hat{\mathbf{y}}+\cos \phi(\mathbf{0})+0(\mathbf{0}) \\
& =\left[(-\cos \phi) \cdot \frac{d \phi}{d t}\right] \hat{\mathbf{x}}+\left[(-\sin \phi) \cdot \frac{d \phi}{d t}\right] \hat{\mathbf{y}}+0 \hat{\mathbf{z}} \\
& =-\frac{d \phi}{d t}(\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}+0 \hat{\mathbf{z}}) \\
& =-\frac{d \phi}{d t} \hat{\mathbf{r}}
\end{aligned}
$$

This is equation (1.46) on page 28.

